Slip Effects on Fractional Viscoelastic Fluids

نویسندگان

  • Muhammad Jamil
  • Najeeb Alam Khan
  • Wen Chen
چکیده

Unsteady flow of an incompressible Maxwell fluid with fractional derivative induced by a sudden moved plate has been studied, where the no-slip assumption between the wall and the fluid is no longer valid. The solutions obtained for the velocity field and shear stress, written in terms of Wright generalized hypergeometric functions pΨq, by using discrete Laplace transform of the sequential fractional derivatives, satisfy all imposed initial and boundary conditions. The no-slip contributions, that appeared in the general solutions, as expected, tend to zerowhen slip parameter is θ → 0. Furthermore, the solutions for ordinary Maxwell and Newtonian fluids, performing the same motion, are obtained as special cases of general solutions. The solutions for fractional and ordinary Maxwell fluid for no-slip condition also obtained as limiting cases, and they are equivalent to the previously known results. Finally, the influence of the material, slip, and the fractional parameters on the fluid motion as well as a comparison among fractional Maxwell, ordinary Maxwell, and Newtonian fluids is also discussed by graphical illustrations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-space Dependent Fractional Viscoelastic Mhd Fluid Flow and Heat Transfer over Accelerating Plate with Slip Boundary

The magnetohydrodynamic(MHD) flow and heat transfer of viscoelastic fluid over an accelerating plate with slip boundary are investigated. Different from most classical works, a modified time-space dependent fractional Maxwell fluid model is proposed in depicting the constitutive relationship of the fluid. Numerical solutions are obtained by explicit finite difference approximation and exact sol...

متن کامل

Transient Electro-osmotic Slip Flow of an Oldroyd-B Fluid with Time-fractional Caputo-Fabrizio Derivative

In this article, the electro-osmotic flow of Oldroyd-B fluid in a circular micro-channel with slip boundary condition is considered. The corresponding fractional system is represented by using a newly defined time-fractional Caputo-Fabrizio derivative without singular kernel. Closed form solutions for the velocity field are acquired by means of Laplace and finite Hankel transforms. Additionally...

متن کامل

Influence of Slip Condition on Peristaltic Transport of a Viscoelastic Fluid with Fractional Burger’s Model

The investigation is to explore the transportation of a viscoelastic fluid with fractional Burgers’ model by peristalsis through a channel under the influence of wall slip condition. This analysis has been carried out under the assumption of long wavelength and low Reynolds number. An approximate analytical solution of the problem is obtained by using Homotopy Analysis method (HAM). It is assum...

متن کامل

A thin-film model for corotational Jeffreys fluids under strong slip.

We derive a thin-film model for viscoelastic liquids under strong slip which obey the stress tensor dynamics of corotational Jeffreys fluids.

متن کامل

Vibration of FG viscoelastic nanobeams due to a periodic heat flux via fractional derivative model

In this work, the vibrations of viscoelastic functionally graded Euler–Bernoulli nanostructure beams are investigated using the fractional-order calculus. It is assumed that the functionally graded nanobeam (FGN) is due to a periodic heat flux. FGN can be considered as nonhomogenous composite structures; with continuous structural changes along the thick- ness of the nanobeam usually, it change...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014